Po-An Chen 10/18/2016

Po-An Chen 10/18/2016

 $Ru(bpy)_3^{2+}$

- Absorption at 452 nm (visible light)
- Stable, long-lived excited state (τ = 1100 ns)
- Single electron transfer (SET) catalsyt
- Effective excited state oxidant and reductant

lr(ppy)₃

- Max absorption at 375 nm (visible light)
- Long-lived excited state (τ = 1.9 µs)
- Single electron transfer (SET) catalsyt
- Effective excited state oxidant and reductant
- Triplet energy of 56 kcal/mol⁻¹

Advantages: Excited species served as both oxidants and reductants.

Low catalyst loading.

Radical intermediates could be generated at milder condition.

Organic molecules generally do not absorb visible light.

Po-An Chen 10/18/2016

Simplified Molecular Orbital Depiction of Ru(bpy)₃²⁺

Ref: MacMillan *et al. Chem. Rev.* **2013**, *113*, 5322–5363 For Ir(ppy)₃: MacMillan *et al. J. Org. Chem.* **2016**, *81*, 6898–6926 Jablonski diagram: http://www.shsu.edu/~chm_tgc/chemilumdir/JABLON.GIF

Po-An Chen 10/18/2016

Oxidative and Reductive Quenching Cycle of Ru(bpy)₃²⁺

Common oxidative quenchers: viologens, polyhalomethanes, dinitro- and dicyanobenzenes

Common reductive quenchers: tertiary amines.

Ref: *Modern Molecular Photochemistry*; Benjamin/Cummings: Menlo Park, CA, 1978

Po-An Chen 10/18/2016

Early Work:

Po-An Chen 10/18/2016

Recently Work:

Po-An Chen 10/18/2016

Photoredox catalysts without co-catalysts

Net Reductive Reaction -Reduction of Electron-Deficient Olefins -Dehalogenation -Reduction of Hydrazides and Hydrazines

Net Oxidative Reaction -Oxidation of Benzylic Alcohols to Aldehydes -Oxidative Hydroxylation of Arylboronic acids -Net Neutral Reactions

-Atom Transfer Radical Additions (ATRA) Cycle.

Po-An Chen 10/18/2016

Photoredox Catalysis and Enamine Catalysis: The Asymmetric α -Alkylation of Aldehyde

ACIE, 2015, 54, 9668-9672

Po-An Chen 10/18/2016

Ref: MacMillan *et al. Chem. Rev.* **2013**, *113*, 5322—5363 For Ir(ppy)₃: MacMillan *et al. J. Org. Chem.* **2016**, *81*, 6898—6926

Po-An Chen 10/18/2016

Selected examples of dual photoredox catalyst and organocatalyst

Ref: *JACS*, **2009**, *131*, 10875—10877 *JACS*, **2010**, *132*, 13600—13603 ACIE, **2015**, *54*, 9668—9672

Po-An Chen 10/18/2016

Po-An Chen 10/18/2016

Ref: *JACS*, **2014**, *136*, 16986—16989 For Ir(ppy)₃: *J. Org. Chem.* **2016**, *81*, 6898—6926

Po-An Chen 10/18/2016

Photoredox Catalysis and Palladium: C-H Arylation with Aryldiazonium Salts

Ref: Sanford et al. JACS. 2011, 133, 18566 Chem. Rev. 2010, 110, 1147

Po-An Chen 10/18/2016

Photoredox Catalysis and Copper:

Trifluoromethylation of Boronic Acid

Po-An Chen 10/18/2016

Photoredox Catalysis and Gold: Current State of the Art in the transformation

Review: Glorius et al, J. Org. Chem. 2016, 81, 6898-6926

Review: Glorius et al, J. Org. Chem. 2016, 81, 6898-6926

Po-An Chen 10/18/2016

Photoredox Catalysis and Nickel: Selected C-C bond formation visible .OH John light R Br റ *lr(III) with Doyle lr^(III) oxidant Ph CO₂H Photoredox L_nNi⁰ Catalytic Cycle R' R′ R SET SET lr(II) ±е Ni with Doyle reductant R U L_n—Ni^(I)—Br Br ArX Nickel $L_n - \dot{N} i^{(II)} - Ar$ R BF₃K Catalytic Cycle R Molander R R Br Radical coupling R Si(cat)₂-X+ R Ar Alkyl—Ņi^(III)L_n partner Fensterbank and Goddard Ar Molander Enantioselective decarboxylative C(sp²)-C(sp³) coupling [lr[(dF(CF₃)ppy]₂(dtbbpy)]PF₆ (2 mol%) Ar Br ÇO₂H NiCl₂•glyme (2 mol%) (S,S)- $(4-tBu-C_6H_4)$ -semicorrin (2.2 mol%) NHBoc NHBoc TBAI, Cs₂CO₃, 34 W blue LEDs 46-84% yield 82-93% ee

Ref: *Chem. Rev.* **2013**, *113*, 5322—5363 For Ir(ppy)₃: *J. Org. Chem.* **2016**, *81*, 6898—6926

Po-An Chen 10/18/2016

Ref: JACS, **2016**, *138*, 475–478 Also see: ACIE, **2015**, *54*, 11414–11418 Org. Lett. **2016**, *18*, 1606–1609

Po-An Chen 10/18/2016

Photoredox Catalysis and Nickel:

CO₂ Extrusion-Recombination

Tsuji-Saeguse CO₂-Extrusion-Recombination: Enolate Allylation

Ref: Chem. Rev. 2011, 111, 1846 JACS, 2014, 136, 13606-13609 JACS, 2015, 137, 11938-11941

Po-An Chen 10/18/2016

General Mechanism of CO₂ Extrusion-Recombination

Ref: JACS, 2015, 137, 11938-11941

Po-An Chen 10/18/2016

Selected examples of CO₂ Extrusion-Recombination OMe Вос 0 \cap 0 Boc Ο Boc Boc 86% 83% 82% 72% Ph Cv .C₂H₄Ph C₂H₄Ph .C₂H₄Ph H, Boc Ο Boc 0 Boc \cap 76% 58% 55%

Proposed Mechanism Based on Cyclopropyl ¹³C-labeling Studies

Ref: JACS, 2015, 137, 11938-11941

Po-An Chen 10/18/2016

The radical intermediate could be stabilized by the Lewis acid => suppressing back-electron transfer

Ref: Yoon *et al, JACS, 2008, 130,* 12886—12887 *JASC*, **2011**, *133*, 1162—1164

Po-An Chen 10/18/2016

Po-An Chen 10/18/2016

General Set-ups for Batch and Flow Photocatalytic Reactions

Po-An Chen 10/18/2016

Ideas

Thank you for your attention